首页> 外文OA文献 >Thin Interface Asymptotics for an Energy/Entropy Approach to Phase-Field Models with Unequal Conductivities
【2h】

Thin Interface Asymptotics for an Energy/Entropy Approach to Phase-Field Models with Unequal Conductivities

机译:电导率不相等的相场模型的能量/熵方法的薄界面渐近

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Karma and Rapped recently developed a new sharp interface asymptotic analysis of the phase-field equations that is especially appropriate for modeling dendritic growth at low undercoolings. Their approach relieves a stringent restriction on the interface thickness that applies in the conventional asymptotic analysis, and has the added advantage that interfacial kinetic effects can also be eliminated. However, their analysis focussed on the case of equal thermal conductivities in the solid and liquid phases; when applied to a standard phase-field model with unequal conductivities, anomalous terms arise in the limiting forms of the boundary conditions for the interfacial temperature that are not present in conventional sharp-interface solidification models, as discussed further by Almgren. In this paper we apply their asymptotic methodology to a generalized phase-field model which is derived using a thermodynamically consistent approach that is based on independent entropy and internal energy gradient functionals that include double wells in both the entropy and internal energy densities. The additional degrees of freedom associated with the generalized phased-field equations can be chosen to eliminate the anomalous terms that arise for unequal conductivities.
机译:Karma和Rapped最近开发了一种新的相位场方程的尖锐界面渐近分析,特别适合于在低过冷条件下对树突生长进行建模。他们的方法减轻了常规渐近分析中对界面厚度的严格限制,并具有可以消除界面动力学效应的附加优势。然而,他们的分析集中在固相和液相热导率相等的情况下。当应用到电导率不相等的标准相场模型时,异常条件会出现在边界温度边界条件的限制形式中,这在常规的锐界面凝固模型中是不存在的,正如Almgren进一步讨论的那样。在本文中,我们将其渐近方法应用于广义相场模型,该模型是使用热力学一致方法得出的,该方法基于独立的熵和内部能量梯度函数,其中包括熵和内部能量密度的双阱。可以选择与广义相场方程相关的附加自由度,以消除因电导率不相等而引起的异常项。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号